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The Creation of the Calculus

Who, by a vigor of mind almost divine, the motions and
figures of the planets, the paths of comets, and the tides of
the seas first demonstrated. NEWTON'S EPITAPH

1. The Motivation for the Calculus

Following hard on the adoption of the function concept came the calculus,
whigh, next to Euclidean geometry, is the greatest creation in all of mathe-
matics. Though it was to some extent the answer to problems already tackled
by the Greeks, the calculus was created primarily to treat the major scientific
problems of the seventeenth century.

There were four major types of problems. The first was; Given the
formula for the distance a body covers as a function of the time, to find the
velocity and acceleration at any instant; and, conversely, given the formula
describing the acceleration of a body as a function of the time, to find the
velocity and the distance traveled. This problem arose directly in the study
of motion and the difficulty it posed was that the velocities and the accelera-
tion of concern to the seventeenth century varied from instant to instant. In
calculating an instantaneous velocity, for example, one cannot, as one can in
the case of average velocity, divide the distance traveled by the time of
travel, because at a given instant both the distance traveled and time are
zero, and 0/0 is meaningless. Nevertheless, it was clear on physical grounds
that moving objects do have a velocity at each instant of their travel. The
inverse problem of finding the distance covered, knowing the formula for
velocity, involves the corresponding difficulty; one cannot multiply the
velocity at any one instant by the time of travel to obtain the distance
traveled because the velocity varies from instant to instant.

The second type of problem was to find the tangent to a curve. Interest
in this problem stemmed from more than one source; it was a problem of
pure geometry, and it was of great importance for scientific applications.
Optics, as we know, was one of the major scientific pursuits of the seven-
teenth century; the design of lenses was of direct interest to Fermat, Descartes,
Huygens, and Newton. To study the passage of light through a lens, one
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Figure 17.1

must know the angle at which the ray strikes the lens in order to apply the
law of refraction. The significant angle is that between the ray and the normal
to the curve (Fig. 17.1), the normal being the perpendicular to the tangent.
Hence the problem was to find either the normal or the tangent. Another
scientific problem involving the tangent to a curve arose in the study of
motion. The direction of motion of a moving body at any point of its path is
the direction of the tangent to the path.

Actually, even the very meaning of “tangent” was open. For the conic
sections the definition of a tangent as a line touching a curve at only one
point and lying on one side of the curve sufficed; this definition was used
by the Greeks. But it was inadequate for the more complicated curves already
in use in the seventeenth century.

The third problem was that of finding the maximum or minimum value
of a function. When a cannonball is shot from a cannon, the distance it will
travel horizontally—the range—depends on the angle at which the cannon
is inclined to the ground. One “practical® problem was to find the angle
that would maximize the range. Early in the seventeenth century, Galileo
determined that (in a vacuum) the maximum range is obtained for an angle
of fire of 45°; he also obtained the maximum heights reached by projectiles
fired at various angles to the ground. The study of the motion of the planets
also involved maxima and minima problems, such as finding the greatest
and least distances of a planet from the sun.

The fourth problem was finding the lengths of curves, for example, the
distance covered by a planet in a given period of time; the areas bounded by
curves; volumes bounded by surfaces; centers of gravity of bodies; and the
gravitational attraction that an extznded body, a planet for example, exerts
on another body. The Greeks had used the method of exhaustion to find some
areas and volumes, Despite the fact that they used it for relatively simple
areas and volumes, they had to apply much ingenuity, because the method
lacked generality. Nor did they often come up with numerical answers.
Interest in finding lengths, areas, volumes, and centers of gravity was revived
when the work of Archimedes became known in Europe. The method of
exhaustion was first modified gradually, and then radically by the invention
of the calculus.
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344 THE CREATION OF THE CALCULUS

2. Early Seventeenth-Century Work on the Calculus

The problems of the calculus were tackled by at least a dozen of the greatest
mathematicians of the seventeenth century and by several dozen minor ones.
All of their contributions were crowned by the achievements of Newton and
Leibniz. Here we shall be able to note only the principal contributions of
the precursors of these two masters.

The problem of calculating the instantaneous velocity from a knowledge
of the distance traveled as a function of the time, and its converse, were soon
seen to be special cases of calculating the instantaneous rate of change of one
variable with respect to another and its converse. The first significant
treatment of general rate problems is due to Newton; we shall examine it
later.

Several methods were advanced to find the tangent to a curve. In his
Traité des indivisibles, which dates from 1634 (though not published until
1693), Gilles Persone de Roberval (1602-75) generalized a method Archi-
medes had used to find the tangent at any point on hisspiral. Like Archimedes,
Roberval thought of a curve as the locus of a point moving under the action
of two velocities. Thus a projectile shot from a cannon is acted on by a
horizontal velocity, PQ in Figure 17.2, and a vertical velocity, PR. The
resultant of these two velocities is the diagonal of the rectangle formed on
PQ and PR. Roberval took the line of this diagonal to be the tangent at P.
As Torricelli pointed out, Roberval’s method used a principle already
asserted by Galileo, namely, that the horizontal and vertical velocities acted
independently of each other. Torricelli himself applied Roberval’s method to
obtain tangents to curves whose equations we now write asy = a".

While the notion of a tangent as a line having the direction of the
resultant velocity was more complicated than the Greek definition of a line
touching a curve, this newer concept applied to many curves for which the
older one failed. It was also valuable because it linked pure geometry and
dynamics, which before Galileo’s work had been regarded as essentially
distinct. On the other hand, this notion of a tangent was objectionable on
mathematical grounds, because it based the definition of tangent on physical
concepts. Many curves arose in situations having nothing to do with motion
and the definition of tangent was accordingly inapplicable. Hence other
methods of finding tangents gained favor.

Fermat’s method, which he had devised by 1629 and which is found in
his 1637 manuscript Methodus ad Disquirendam Maximam et Minimam (Method
of Finding Maxima and Minima),! is in substance the present method. Let
PT be the desired tangent at P on a curve (Fig. 17.3). The length 7Q is
called the subtangent. Fermat’s plan is to find the length of 7°Q, from which
one knows the position of 7 and can then draw TP.

1. Guores, 1, 138-79; 8, 121-56.
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Let @@, be an increment in 7Q of amount E. Since triangle TQP is
similar to triangle PRT;,

TQ:PQ = E: TR,
But, Fermat says, TR is almost P,R; therefore,
TQ:PQ = E:(P,Q, — QP).

Calling PQ, f(x) in our modern notation, we have

7Q:f(x) = E:[f(x + E) - f(%)].

Hence

B
R=fvE -7

For the f(x) Fermat treated, it was immediately possible to divide numerator
and denominator of the above fraction by E. He then set E = 0 (he says,
remove the E term) and so obtained TQ.

Fermat applied his method of tangents to many difficult problems.
The method has the form of the now-standard method of the differential
calculus, though it begs entirely the difficult theory of limits.

To Descartes the problem of finding a tangent to a curve was important
because it enables one to obtain properties of curves—for example, the angle
of intersection of two curves. He says, “ This is the most useful, and the most
general problem, not only that I know, but even that I have any desire to
know in geometry.” He gave his method in the second book of La Géométrie.
It was purely algebraic and did not involve any concept of limit, whereas
Fermat’s did, if rigorously formulated. However, Descartes’s method was
useful only for curves whose equations were of the form y = f(x), where f(x)
was a simple polynomial. Though Fermat’s method was general, Descartes
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thought his own method was better; he criticized Fermat’s, which admittedly
was not clear as presented then, and tried to interpret it in terms of his own
ideas. Fermat in turn claimed his method was superior and saw advantages
in his use of the little increments E.

Isaac Barrow (1630-77) also gave a method of finding tangents to
curves. Barrow was a professor of mathematics at Cambridge University.
Well versed in Greek and Arabic, he was able to translate some of Euclid’s
works and to improve a number of other translations of the writings of Euclid,
Apollonius, Archimedes, and Theodosius. His chief work, the Lectiones
Geometricae (1669), is one of the great contributions to the calculus. In it he
used geometrical methods, “freed,” as he put it, “from the loathsome burdens
of calculation.” In 1669 Barrow resigned his professorship in favor of Newton
and turned to theological studies.

Barrow’s geometrical method is quite involved and makes use of
auxiliary curves. However, one feature is worth noting because it illustrates
the thinking of the time; it is the use of what is called the differential, or
characteristic, triangle. He starts with the triangle PRQ (Fig. 17.4), which
results from the increment PR, and uses the fact that this triangle is similar
to triangle PMN to assert that the slope QR/PR of the tangent is equal to
PM|MN. However, Barrow says, when the arc PP’ i3 sufficiently small we
may safely identify it with the segment PQ of the tangent at P. The triangle
PRP’ (Fig. 17.5), in which PP’ is regarded both as an arc of the curve and as
part of the tangent, is the characteristic triangle. It had been used much
earlier by Pascal, in connection with finding areas, and by others before him.

In Lecture 10 of the Lectiones, Barrow does resort to calculation to find
the tangent to a curve. Here the method is essentially the same as Fermat’s.
He uses the equation of the curve, say y® = px, and replaces x by x + ¢
and y by y + a. Then

¥ + 2ay + a® = px + pe.
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He subtracts 2 = px and obtains
2ay + a* = pe.

Then he discards higher powers of a and ¢ (where present), which amounts
to replacing PRP’ of Figure 17.4 by PRP’ of Figure 17.5, and concludes
that

a_2,

e 2
Now he argues that afe = PM|NM, so that
PM_ p
NM 2%

Since PM is y, he has calculated NM, the subtangent, and knows the
position of N.

The work on the third class of problems, finding the maxima and
minima of functions, may be said to begin with an observation by Kepler.
He was interested in the shape of casks for wine; in his Stereometria Doliorum
(1615) he showed that, of all right parallelepipeds inscribed in a sphere and
having square bases, the cube is the largest. His method was to calculate the
volumes for particular choices of dimensions. This in itself was not significant;
but he noted that as the maximum volume was approached, the change in
volume for a fixed change in dimensions grew smaller and smaller.

Fermat in his Methodus ad Disquirendam gave his method, which he
illustrated with the following example: Given a straight line (segment), it is
required to find a point on it such that the rectangle contained by the two
segments of the line is a maximum. He calls the whole segment B and lets
one part of it be A. Then the rectangle is 4B — A2. He now replaces 4 by
4 + E. The other part is then B — (4 + E), and the rectangle becomes
(4 + E)(B — A — E). He equates the two areas because, he argues, at a
maximum the two function values—that is, the two areas—should be equal.
Thus

AB + EB — A® — 24E — E? = AB — A2,
By subtracting common terms from the two sides and dividing by E, he gets
B =24 4 E.

He then sets E = 0 (he says, discard the E term) and gets B = 24, Thus
the rectangle is a square.

The method, Fermat says, is quite general; he describes it thus: If 4
is the independent variable, and if 4 is increased to A + E, then when E
becomes indefinitely small and when the function is passing through a
maximum or minimum, the two values of the function will be equal. These
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two values are equated; the equation is divided by E; and E is now made to
vanish, so that from the resulting equation the value of 4 that makes the
function 2 maximum or minimum can be determined. The method is
essentially the one he used to find the tangent to a curve. However, the basic
fact there is a similarity of two triangles; here it is the equality of two
function values. Fermat did not see the need to justify introducing a non-zero
E and then, after dividing by E, setting E = 0.2

The seventeenth-century work on finding areas, volumes, centers of
gravity, and lengths of curves begins with Kepler, who is said to have been
attracted to the volume problem because he noted the inaccuracy of methods
used by wine dealers to find the volumes of kegs. This work (in Stereometria
Doliorum) is crude by modern standards. For example, the area of a circle is
to him the area of an infinite number of triangles, each with a vertex at the
center and a base on the circumference. Then from the formula for the area
of a regular inscribed polygon, 1/2 the perimeter times the apothem, he
obtained the area of the circle. In an analogous manner he regarded the
volume of a sphere as the sum of the volumes of small cones with vertices at
the center of the sphere and bases on its surface. He then proceeded to show
that the volume of the sphere is 1/3 the radius times the surface. The cone
he regarded as a sum of very thin circular discs and was able thereby to
compute its volume. Stimulated by Archimedes’ Spheroids and Conoids, he
generated new figures by rotation of areas and calculated the volumes. Thus
he rotated the segment of a circle cut out by a chord around the chord and
found the volume.

The identification of curvilinear areas and volumes with the sum of an
infinite number of infinitesimal clements of the same dimension is the essence
of Kepler’s method. That the circle could be regarded as the sum of an
infinite number of triangles was in his mind justified by the principle of
continuity (Chap. 14, sec. 5). He saw no difference in kind between the two
figures. For the same reason a line and an infinitesimal area were really the
same; and he did, in some problems, regard an area as a sum of lines.

In Two New Sciences Galileo conceives of areas in a manner similar to
Kepler’s; in treating the problem of uniformly accelerated motion, he gives
an argument to show that the area under the time-velocity curve is the
distance. Suppose an object moves with varying velocity » = 32¢, represented
by the straight line in Figure 17.6; then the distance covered in time 04 is
the area 04B. Galileo arrived at this conclusion by regarding 4'B’, say, as
a typical velocity at some instant and also as the infinitesimal distance
covered (as it would be if multiplied by a very small element of time), then
arguing that the area OAB, which is made up of lines 4'B’, must therefore be

2. For the cquations that precede his sctting E = 0, Fermat used the term adaequalitas,
which Carl B, Boyer in The Concepts of the Calculus, p. 156, has aptly translated as ** pseudo-
equality.”
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the total distance. Since AB is 32¢ and OA is ¢, the area of OAB is 16¢2. The
reasoning is of course unclear. It was supported in Galileo’s mind by
philosophical considerations that amount to regarding the area 04B as made
up of an infinite number of indivisible units such as 4'B’. He spent much
time on the problem of the structure of continuous magnitudes such as line
segments and areas but did not resolve it.

Bonaventura Cavalieri (1598-1647), a pupil of Galileo and professor in
a lyceum in Bologna, was influenced by Kepler and Galileo and urged by
the latter to look into problems of the calculus. Cavalieri developed the
thoughts of Galileo and others on indivisibles into a geometrical method and
published a work on the subject, Geometria Indivisibilibus Continuorum Nova
gquadam Ratione Promota (Geometry Advanced by a thus far Unknown Method,
Indivisibles of Continua, 1635). He regards an area as made up of an in-
definite number of equidistant parallel line segments and a volume as com-
posed of an indefinite number of parallel plane areas; these elements he calls
the indivisibles of area and volume, respectively. Cavalieri recognizes that
the number of indivisibles making up an area or volume must be indefinitely
large but does not try to elaborate on this. Roughly speaking, the indivisi-
bilitists held, as Cavalieri put it in his Exercitationes Geometricae Sex (1647),
that a line is made up of points as a string is of beads; a plane is made up of
lines as a cloth is of threads; and a solid is madc up of planc arcas as a book
is made up of pages. However, they allowed for an infinite number of the
constituent elements.

Cavalieri’s method or principleisillustrated by the following proposition,
which of course can be proved in other ways. To show that the parallelogram
ABCD (Fig. 17.7) has twice the area of either triangle ABD or BCD, he
argued that when GD = BE, then GH = FE. Hence triangles ABD and
BCD are made up of an equal number of equal lines, such as GH and EF,
and therefore must have equal areas.

The same principle is incorporated in the proposition now taught in
solid geometry books and known as Cavalieri’s Theorem. The principle says
that if two solids have equal altitudes and if sections made by planes parallel
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Figure 17.8

to the bases and at equal distances from them always have a given ratio, the
volumes of the two solids have this given ratio to each other. Using essentially
this principle, Cavalieri proved that the volume of a cone is 1/3 that of the
circumscribed cylinder. Likewise he treated the area under two curves, say
y = f(x) and y = g(x) in our notation, and over the same range of x-values;
considering the areas as the sums of ordinates, if the ordinates of one are in a
constant ratio to those of the other, then, says Cavalieri, the areas are in the
same ratio. He showed by his methods in Centuria di varii problemi (1639) that,
in our notation,

for positive integral values of #n up to 9. However, his method was entirely
geometrical. He was successful in obtaining correct results because he
applied his principle to calculate ratios of areas and volumes where the
ratio of the indivisibles making up the respective areas and volumes was
constant.

Cavalieri’s indivisibles were criticized by contemporaries, and Cavalieri
attempted to answer them; but he had no rigorous justification. At times he
claimed his method was just a pragmatic device to avoid the method of
exhaustion. Despite criticism of the method, it was intensively employed by
many mathematicians. Others, such as Fermat, Pascal, and Roberval, used
the method and even the language, sum of ordinates, but thought of area
as a sum of infinitely small rectangles rather than as a sum of lines.

In 1634 Roberval, who says he studied the “divine Archimedes,” used
essentially the method of indivisibles to find the area under one arch of the
cycloid, a problem Mersenne called to his attention in 1629. Roberval is
sometimes credited with independent discovery of the method of indivisibles,
but actually he believed in the infinite divisibility of lines, surfaces, and
volumes, so that there are no ultimate parts. He called his method the
““method of infinities,” though he used as the title of his work Traité des
indivisibles.

€

EARLY SEVENTEENTH-CENTURY WORK ON THE CALCULUS 351

—

Figure 17.9

Roberval’s method of obtaining the area under the cycloid is instructive.
Let OABP (Fig. 17.8) be the area under half of an arch of a cycloid. OCis the
diameter of the generating circle and P is any point on the arch. Take
PQ = DF. The locus of Q is called the companion curve to the cycloid. (The
curve OQB is, in our notation, y = asin x/a where @ is the radius of the
generating circle, provided the origin is at the midpoint of OQB and
the x-axis is parallel to 04.) Roberval affirms that the curve 0QB divides
the rectangle OABC into two equal parts because, basically, to each line DQ
in OQBC there corresponds an equal line RS in 0ABQ. Thus Cavalieri’s
principle is employed. The rectangle O4BC has its base and altitude equal,
respectively, to the semicircumference and diameter of the generating circle;
hence its area is twice that of the circle. Then OABQ has the same area as
the generating circle. Also, the area between OPB and 0QB equals the area
of the semicircle OFC, since by the very definition of @, DF = PQ, so that
these two areas are everywhere of the same width. Hence the area under the
half-arch is 1 1/2 times the area of the generating circle. Roberval also found
the area under one arch of the sine curve, the volume generated by revolving
the arch about its base, other volumes connected with the cycloid, and the
centroid of its area. )

The most important new method of calculating areas, volumes, and
other quantities started with modifications of the Greek method of exhaustion.
Let us consider a typical example. Suppose one seeks to calculate the area
under the parabola y = x? from x = O to x = B (Fig. 17.9). Whereas the
method of exhaustion used different kinds of rectilinear approximating
figures, depending on the curvilinear area in question, some seventeenth-
century men adopted a systematic procedure using rectangles as shown. As
the width d of these rectangles becomes smaller, the sum of the areas of the
rectangles approaches the area under the curve. This sum, if the bases are
all 4 in width, and if one uses the characteristic property of the parabola that
the ordinate is the square of the abscissa, is

(1 d-d? + d(2d)® + d(3d)? +-- - + d(nd)?
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or
d3(1 +22 4+ 3% 4.+ n%).
Now the sum of the mth powers of the first » natural numbers had been

obtained by Pascal and Fermat for use in just such problems; so the mathe-
maticians could readily replace the last expression by

3 2
@) d3(2n + gn + n).
But d is the fixed length OB divided by n. Hence (2) becomes
1 1 1
af_ 4 — o+ ).
(3) 0B (3 toamt Gn’)

Now if one argues, as these men did, that the last two terms can be neglected
when n is infinite, the correct result is obtained. The limit process had not
yet been introduced—or was only crudely perceived—and so the neglect of
terms such as the last two was not justified.

We see that the method calls for approximating the curvilinear figure by
rectilinear ones, as in the method of exhaustion. However, there is a vital
shift in the final step: in place of the indirect proof used in the older method,
here the number of rectangles becomes infinite and one takes the limit of (3)
as n becomes infinite—though the thinking in terms of limit was at this stage
by no means explicit. This new approach, used as early as 1586 by Stevin
in his Statics, was pursued by many men, including Fermat.?

If the curve involved was not the parabola, then one had to replace the
characteristic property of the parabola by that of the curve in question and
50 obtain some other series in place of (1} above. Summing the analogue of
(1) to obtain the analogue of (2) did call for ingenuity. Hence the results on
areas, volumes, and centers of gravity were limited. Of course the powerful
method of evaluating the limit of such sums by reversing differentiation
was not yet envisaged.

Using essentially the kind of summation technique we have just illus-
trated, Fermat knew before 1636 that (in our notation)

au+ 1
n+1
for all rational » except — 1.% This result was also obtained independently by
Roberval, Torricelli, and Cavalieri, though in some cases only in geometrical
form and for more limited n.

Among those who used summation in geometrical form was Pascal.
In 1658 he took up problems of the cycloid.® He calculated the area of any

a
fx"dxr-
o

3. @uvres, 1, 255-59; 3, 216-19.
4. Euvres, 1, 255-59; 3, 216-19.
5. Traité des sinus du quart de cercle, 1659 = Euvres, 9, 60-76.
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segment of the curve cut off by a line parallel to the base, the centroid of
the segment, and the volumes of solids generated by such segments when
revolved around their bases (¥Z in Fig. 17.10) or a vertical line (the axis of
symmetry). In this work, as well as in earlier work on areas under the curves
of the family y = x*, he summed small rectangles in the manner described
in connection with (1) above, though his work and results were stated geo-
metrically. Under the pseudonym of Dettonville, he proposed the problems
he had solved as a challenge to other mathematicians, then published his
own superior solutions (Lettres de Dettonville, 1659).

Before Newton and Leibniz, the man who did most to introduce
analytical methods in the calculus was John Wallis (1616-1703). Though
he did not begin to learn mathematics until he was about twenty—his
university education at Cambridge was devoted to theology—he became
professor of geometry at Oxford and the ablest British mathematician of the
century, next to Newton. In his drithmetica Infinitorum (1655), he applied
analysis and the method of indivisibles to effect many quadratures and
obtain broad and useful results.

One of Wallis’s notable results, obtained in his efforts to calculate the
area of the circle analytically, was a new expression for 7. He calculated the
area bounded by the axes, the ordinate at x, and the curve for the functions

y=(1-2y=(1-y=(1-Ny=(1-5,..-
and obtained the areas

3 1

3 5 3" 75 7
respectively. When x = 1, these areas are
2 8 48
*) Ly 1T

Now the circle is given by y = (1 — #2)*2. Using induction and interpola-
tion, Wallis calculated its arca, and by further complicated reasoning
arrived at

..........
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Figure 17.11 %o X X3 X X4

Gregory of St. Vincent in his Opus Geometricum (1647), gave the basis
for the important connection between the rectangular hyperbola and the
logarithm function. He showed, using the method of exhaustion, that if for
the curve of y = 1/x (Fig. 17.11) the x, are chosen so that the areas g, , ¢,
d, ... are equal, then the y, are in geometric progression. This means that
the sum of the areas from x, to x;, which sums form an arithmetical pro-
gression, is proportional to the logarithm of the y; values or, in our notation,

.r & _ klogy.
xy X

This agrees with our familiar calculus result, because y = 1/x. The observa-
tion that the areas can beinterpreted aslogarithmsis actually due to Gregory’s
pupil, the Belgian Jesuit Alfons A. de Sarasa (1618-67), in his Solutio
Problematis a Mersenno Propositi (1649). About 1665 Newton also noted the
connection between the area under the hyperbola and logarithms and in-
cluded this relation in his Method of Fluxions. He expanded 1/(1 + x) by the
binomial theorem and integrated term by term to obtain

P
log (1 +#)=2x—5 +5—---.

Nicholas Mercator, using Gregory’s results, gave the same series independ-
ently (though he did not state it explicitly) in his Logarithmotechnia of 1668.
Other men soon found series which, as we would put it, converged more
rapidly. The work on the quadrature of the hyperbola and its relation to the
logarithm function was done by many men, and much of it was com-
municated in letters, so that it is hard to trace the order of discovery and to
assign credit.

Up to about 1650 no one believed that the length of a curve could equal
exactly the length of a line. In fact, in the second book of La Géométrie,
Descartes says the relation between curved lines and straight lines is not nor
ever can be known. But Roberval found the length of an arch of the cycloid.
The architect Christopher Wren (1632-1723) rectified the cycloid by showing
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(Fig. 17.12) that arc PA = 2PT.® William Neile (1637-70) also obtained
(1659) the length of an arch and, using a suggestion of Wallis, rectified the
semicubical parabola (y? = ax3).” Fermat, too, calculated some lengths of
curves. These men usually used an inscribed polygon to approximate the
curve, found the sum of the segments, then let the number of segments
become infinite as each got smaller. Jameg Gregory (1638-75), a professor
at St. Andrews and Edinburgh (whose work was known slightly to his
contemporaries but not known generally until a memorial volume, edited by
H. W. Turnbull, appeared in 1939), gave in his Geometriae Pars Universalis
(Universal Part of Geometry, 1668) a method of rectifying curves.

Further results on rectification were obtained by Christian Huygens
(1629-95). In particular, he gave the length of arc of the cissoid. He also
contributed to the work on areas and volumes and was the first to give results
on the areas of surfaces beyond that of the sphere. Thus he obtained the
areas of portions of the surfaces of the paraboloid and hyperboloid. Huygens
obtained all these results by purely geometric methods, though he did use
arithmetic, as Archimedes did occasionally, to obtain guantitative answers,

The rectification of the ecllipse defied the mathematicians. In fact,
James Gregory asserted that the rectification of the ellipse and the hyperbola
could not be achieved in terms of known functions. For a while mathe-
maticians were discouraged from further work on this problem and no new
results were obtained until the next century.

We have been discussing the chief contributions of the predecessors of
Newton and Leibniz to the four major problems that motivated the work on
the calculus. The four problems were regarded as distinct; yet relationships
among them had been noted and even utilized. For example, Fermat had
used the very same method for finding tangents as for finding the maximum
value of a function. Also, the problem of the rate of change of a function with
respect to the independent variable and the tangent problem were readily
seen to be the same. In fact, Fermat’s and Barrow’s method of finding
tangents is merely the geometrical counterpart of finding the rate of change.
But the major feature of the calculus, next to the very concepts of the

6. The method was published by Wallis in Tractatus Duo (1659 = Opera, 1, 550-69).
Wren gave only the result.
7. Neile's work was published by Wallis in the reference in footnote 6.
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derivative and of the integral as a limit of a sum, is the fact that the integral
can be found by reversing the differentiation process or, as we say, by finding
the antiderivative. Much evidence of this relationship had been encountered,
but its significance was not appreciated. Torricelli saw in special cases that
the rate problem was essentially the inverse of the area problem. It was, in
fact, involved in Galileo’s use of the fact that the area under a velocity-time
graph gives distance. Since the rate of change of distance must be velocity,
the rate of change of area, regarded as a “sum,” must be the derivative of
the area function. But Torricelli did not see the general point. Fermat, too,
knew the relationship between area and derivative in special cases but did
not appreciate its generality or importance. James Gregory, in his Geometriae
of 1668, proved that the tangent and area problems are inverse problems
but his book went unnoticed. In Geometrical Lectures, Barrow had the relation-
ship between finding the tangent to a curve and the area problem, but it
was in geometrical form, and he himself did not recognize its significance.

Actually an immense amount of knowledge of the calculus had accumu-
lated before Newton and Leibniz made their impact. A survey of even the
one book by Barrow shows a method of finding tangents, theorems on the
differentiation of the product and quotient of two functions, the differentia-
tion of powers of x, the rectification of curves, change of variable in a definite
integral, and even the differentiation of implicit functions. Though in
Barrow’s case the geometric formulation made the discernment of the general
ideas difficult, in Wallis’s Arithmetica Infinitorum comparable results were in
algebraic form.

One wonders then what remained to be achieved in the way of major
new results. The answer is greater generality of method and the recognition
of the generality of what had already been established in particular problems.
The work on the calculus during the first two thirds of the century lost itself
in details. Also, in their efforts to attain rigor through geometry, many men
failed to utilize or explore the implications of the new algebra and coordinate
geometry, and exhausted themselves in abortive subtle reasonings. What
ultimately fostered the necessary insight and the attainment of generality was
the arithmetical work of Fermat, Gregory of St. Vincent, and Wallis, the
men whom Hobbes criticized for substituting symbols for gecometry. James
Gregory stated in the preface to Geometriae that the true division of mathe-
matics was not into geometry and arithmetic but into the universal and the
particular. The universal was supplied by the two all-embracing minds,
Newton and Leibniz.

3. The Work of Newton

Great advances in mathematics and science are almost always built on the
work of many men who contribute bit by bit over hundreds of years; even-
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tually one man sharp enough to distinguish the valuable ideas of his pre-
decessors from the welter of suggestions and pronouncements, imaginative
enough to fit the bits into a new account, and audacious enough to build a
master plan takes the culminating and definitive step. In the case of the
calculus, this was Isaac Newton.

Newton (1642-1727) was born in the hamlet of Woolsthorpe, England,
where his mother managed the farm left by her husband, who died two
months before Isaac was born. He was educated at local schools of low
educational standards and as a youth showed no special flair, except for an
interest in mechanical devices. Having passed entrance examinations with a
deficiency in Euclidean geometry, he entered Trinity College of Cambridge
University in 1661 and studied quietly and unobstrusively. At one time he
almost changed his course from natural philosophy (science) to law. Ap-
parently receiving very little stimulation from his teachers, except possibly
Barrow, he experimented by himself and studied Descartes’s Géoméirie, as
well as the works of Copernicus, Kepler, Galileo, Wallis, and Barrow.

Just after Newton finished his undergraduate work the university was
closed down because the plague was widespread in the London area. He left
Cambridge and spent the years 1665 and 1666 in the quiet of the family
home at Woolsthorpe. There he initiated his great work in mechanics,
mathematics, and optics. At this time he realized that the inverse square law
of gravitation, a concept advanced by others, including Kepler, as far back
as 1612, was the key to an embracing science of mechanics; he obtained a
general method for treating the problems of the calculus; and through ex-
periments with light he made the epochal discovery that white light, such as
sunlight, is really composed of all colors from violet to red. “All this,”
Newton said later in life, “was in the two plague years of 1665 and 1666, for
in those days I was in the prime of my age for invention, and minded mathe-
matics and philosophy [science] more than at any other time since.”

Newton said nothing about these discoveries. He returned to Cambridge
in 1667 to secure a master’s degree and was elected a fellow of Trinity College.
In 1669 Isaac Barrow resigned his professorship and Newton was appointed
in Barrow’s place as Lucasian professor of mathematics. Apparently he was
not a successful teacher, for few students attended his lectures; nor was the
originality of the material he presented noticed by his colleagues. Only
Barrow and, somewhat later, the astronomer Edmond Halley (1656-1742)
recognized his greatness and encouraged him.

At first Newton did not publish his discoveries. He is said to have had
an abnormal fear of criticism; De Morgan says that “a morbid fear of
opposition from others ruled his whole life.” When in 1672 he did publish
his work on light, accompanied by his philosophy of science, he was severely
criticized by most of his contemporaries, including Robert Hooke and
Huygens, who had different ideas on the nature of light. Newton was so
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taken aback that he decided not to publish in the future. However, in 1675
he did publish another paper on light, which contained his idea that light
was a stream of particles—the corpuscular theory of light. Again he was met
by a storm of criticism and even claims by others that they had already
discovered these ideas. This time Newton resolved that his results would be
published after his death. Nonetheless he did publish subsequent papers and
several famous books, the Principia, the Opticks (English edition 1704, Latin
edition 1706), and the Arithmetica Universalis (1707).

From 1665 on he applied the law of gravitation to planetary motion;
in this area the works of Hooke and Huygens influenced him considerably.
In 1684 his friend Halley urged him to publish his results, but aside from his
reluctance to publish Newton lacked a proof that the gravitational attraction
exerted by a solid sphere acts as though the sphere’s mass were concentrated
at the center. He says, in a letter to Halley of June 20, 1686, that until
1685 he suspected that it was false. In that year he showed that a sphere
whose density varies only with distance to the center does in fact attract an
external particle as though the sphere’s mass were concentrated at its
center, and agreed to write up his work.

Halley then assisted Newton editorially and paid for the publication.
In 1687 the first edition of the Philosophiae Naturalis Principia Mathematica
(The Mathematical Principles of Natural Philosophy) appeared. There were two
subsequent editions, in 1713 and 1726, the second edition containing im-
provements. Though the book brought Newton great fame, it was very
difficult to understand. He told a friend that he had purposely made it
difficult “to avoid being bated by little smatterers in mathematics.” He no
doubt hoped in this way to avoid the criticism that his earlier papers on
light had received.

Newton was also a major chemist. Though there are no great discoveries
associated with his work in this area, one must take into account that
chemistry was then in its infancy. He had the correct idea of trying to explain
chemical phenomena in terms of ultimate particles, and he had a profound
knowledge of experimental chemistry. In this subject he wrote one major
paper, “De natura acidorum” (written in 1692 and published in 1710). In
the Philosophical Transactions of the Royal Society of 1701, he published a
paper on heat that contains his famous law on cooling. Though he read the
works of alchemists, he did not accept their cloudy and mystical views. The
chemical and physical properties of bodies could, he believed, be accounted
for in terms of the size, shape, and motion of the ultimate particles; he
rejected the alchemists’ occult forces, such as sympathy, antipathy, congruity,
and attraction.

In addition to his work on celestial mechanics, light, and chemistry,
Newton worked in hydrostatics and hydrodynamics. Beyond his superb
experimental work on light, he experimented on the damping of pendulum
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motion by various media, the fall of spheres in air and water, and the flow of
water from jets. Like most men of the time Newton constructed his own
equipment. He built two reflecting telescopes, even making the alloy for the
frames, molding the frames, making the mountings, and polishing the lenses.

After serving as a professor for thirty-five years Newton became depressed
and suffered a nervous breakdown. He decided to give up research and in
1695 accepted an appointment as warden of the British Mint in Londen.
During his twenty-seven years at the mint, except for work on an occasional
problem, he did no research. He became president of the Royal Society in
1703, an office he held until his death; he was knighted in 1705.

It is evident that Newton was far more engrossed in science than in
mathematics and was an active participant in the problems of his time. He
considered the chief value of his scientific work to be its support of revealed
religion and was, in fact, a learned theologian, though he never took orders.
He thought scientific research hard and dreary but stuck to it because it
gave evidence of God’s handiwork. Like his predecessor Barrow, Newton
turned to religious studies later in life. In The Chronology of Ancient Kingdoms
Amended, he tried to date accurately events described in the Bible and other
religious documents by relating them to astronomical events. His major
religious work was the Observations Upon the Prophecies of Daniel and the
Apocalypse of St. John. Biblical exegesis was a phase of the rational approach to
religion that was popular in the Age of Reason; Leibniz, too, took a hand in it.

So far as the calculus is concerned, Newton generalized the ideas already
advanced by many men, established full-fledged methods, and showed the
interrelationships of several of the major problems described above. Though
he learned much as a student of Barrow, in algebra and the calculus he was
more influenced by the works of Wallis. He said that he was led to his
discoveries in analysis by the Arithmetica Infinitorum; certainly in his own work
on the calculus he made progress by thinking analytically. However, even
Newton thought the geometry was necessary for a rigorous proof.

In 1669 Newton circulated among his friends a monograph entitled
De Analysi per Aequationes Numero Terminorum Infinitas (On Analysis by Means
of Equations with an Infinite Number of Terms); it was not published until
1711. He supposes that he has a curve and that the area z (Fig. 17.18) under
this curve is given by
5) z = aw,

where m is integral or fractional. He calls an infinitesimal increase in %, the
moment of x, and denotes it by o, a notation used by James Gregory and
the equivalent of Fermat’s E. The area bounded by the curve, the x-axis,
the y-axis, and the ordinate at x + o he denotes by z + oy, oy being the
moment of area. Then

(6) z + oy = a(x + o)™
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Figure 17.13 x x+0

He applies the binomial theorem to the right side, obtaining an infinite
series when m is fractional, subtracts (5) from (6), divides through by o,
neglects those terms that still contain ¢, and obtains

Yy = max™"1.
Thus, in our language, the rate of change of area at any x is the y-value of
the curve at that value of x. Conversely, if the curve is y = max™~1, the
area under it is z = ax™.

In this process Newton not only gave a general method for finding the
instantaneous rate of change of one variable with respect to another (z with
respect to x in the above example), but showed that area can be obtained by
reversing the process of finding a rate of change. Since areas had also been
expressed and obtained by the summation of infinitesimal areas, Newton
also showed that such sums can be obtained by reversing the process of finding
a rate of change. This fact, that summations (more properly, limits of sums)
can be obtained by reversing differentiation, is what we now call the funda-
mental theorein of the calculus. Though it was known in special cases and
dimly foreseen by Newton’s predecessors, he saw it as general. He applied
the method to obtain the area under many curves and to solve other problems
that can be formulated as summations.

After showing that the derivative of the area is the y-value and asserting
that the converse is true, Newton gave the rule that, if the y-value be a sum
of terms, then the area is the sum of the areas that result from each of the
terms. In modern terms, the indefinite integral of a sum of functions is the
sum of the integrals of the separate functions.

His next contribution in the monograph carried further his use of infinite
series. To integrate y = a?/(b + x), he divided 4? by b + x and obtained

2 asx 2,2 2
=G FAF o

Having obtained this infinite series, he finds the integral by integrating
term by term so that the area is

ax _ald  alxl  ast
T Tt I T Y
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He says of this infinite series that a few of the initial terms are exact enough
for any use, provided that b be equal to x repeated some few times.
Likewise, to integrate y = 1/(1 + x?) he uses the binomial expansion
to write
y=1 -4+ 28428 —...

and integrates term by term. He notes that if, instead, y is taken to be
1/(x* + 1), then by binomial expansion one would obtain

y=x"2 x4 4+ 20— x"0 ...

and now one can integrate term by term. He then remarks that when x is
small enough the first expansion is to be used; but when x is large, the
second is to be used. Thus he was somewhat aware that what we call con-
vergence is important, but had no precise notion about it.

Newton realized that he had extended term by term integration to
infinite series but says in the De Analysi:

And whatever the common Analysis performs by Means of Equations of
a finite Number of Terms (provided that can be done) this can always
perform the same by Means of infinite Equations so that I have not made
any question of giving this the name of Analysis likewise. For the reason-
ings in this are no less certain than in the other; nor the equations less
exact; albeit we Mortals whose reasoning powers are confined within
narrow limits, can neither express, nor so conceive all the Terms of these
Equations, as to know exactly from thence the quantitics we want.

Thus far in his approach to the calculus Newton used what may be
described as the method of infinitesimals. Moments are infinitely small
quantities, indivisibles or infinitesimals. Of course the logic of what Newton
did is not clear. He says in this work that his method is “shortly explained
rather than accurately demonstrated.”

Newton gave a second, more extensive, and more definitive exposition
of his ideas in the book Methodus Fluxionum et Serierum Infinitarum, written in
1671 but not published until 1736. In this work he says he regards his
variables as generated by the continuous motion of points, lines, and planes,
rather than as static aggregates of infinitesimal elements, as in the earlier
paper. A variable quantity he now called a fluent and its rate of change, the
fluxion. His notation is # and g for fluxions of the fluents x and y. The fluxion
of & is 2, etc. The fluent of which x is the fluxion is £, and the fluent of the
latter is £.

In this second work Newton states somewhat more clearly the funda-
mental problem of the calculus: Given a relation between two fluents, find
the relation between their fluxions, and conversely. The two variables whose
relation is given can represent any quantities. However, Newton thinks of
them as changing with time because it is a useful way of thinking, though,
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he points out, not necessary. Hence if 0 is an “infinitely small interval of
time,” then #0 and go are the indefinitely small increments in x and y or the
moments of x and y. To find the relation between g and %, suppose, for
example, the fluent isy = »*. Newton first forms

y + 3o = (x + %0)",

and then proceeds as in the earlier paper. He expands the right side by
using the binomial theorem, subtractsy = x*, divides through by o, neglects
all terms still containing o, and obtains

9 = nx* 1,
In modern notation this result can be written

Y _ e &
d‘—-nx‘ z

and since dy/dx = (dy/dt)/(dx/dt), Newton, in finding the ratio of dy/dt to
dx[dt or ¢ to %, has found dy/dx.

The method of fluxions is not essentially different from the one used in
the De Analysi, nor is the rigor any better; Newton drops terms such as xko
and fx%o%o (he writes £%00) on the ground that they are infinitely small com-
pared to the one retained. However, his point of view in the Method of
Fluxions is somewhat different. The moments %0 and go change with time o,
whereas in the first paper the moments are ultimate fixed bits of x and z.
This newer view follows the more dynamic thinking of Galileo; the older
used the static indivisible of Cavalieri. The change served, as Newton put it,
only to remove the harshness from the doctrine of indivisibles; however, the
moments 0 and yo are still some sort of infinitely small quantities. Moreover,
% and g, which are the fluxions or derivatives with respect to time of x and
¥, are never really defined; this central problem is evaded.

Given a relation between £ and g, finding the relation between x and y
is more difficult than merely integrating a function of x. Newton treats
several types: (1) when £, ¢, and x or y are present; (2) when £, §, x, and ¥
are present; (3) when %, ¢, Z, and the fluents are present. The first type is
the easiest and, in modern notation, calls for solving dy/dx = f(x). Of the
second type, Newton treats g/ = 1 — 3x + y + x® + xy and solves it by a
successive approximation process. He starts with gfs =1 — 3x + x? as a
first approximation, cbtains y as a function of x, introduces this value of y on

the right side of the original equation, and continues the process. Newton .

describes what he does but does not justify it. Of the third type, he treats
2% — 2 + yx = 0. He assumes a relation between x and y, say x = g3, so
that # = 2gy. Then the equation becomes 4gy — £ — gy? = 0, from which
he gets 22 + (y3/3) = z. Thus, if the third type is regarded as a partial
differential equation, Newton obtains only a particular integral.
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Newton realized that in this paper he had presented a general method.
In a letter to John Collins, dated December 10, 1672, wherein he gives the
facts of his method and one example, he says,

This is one particular, or rather corollary, of a general method, which
extends itself, without any troublesome calculations, not only to the
drawing of tangents to any curved lines, whether geometrical or mechani-
cal. .. but also to resolving other abstruser kinds of problems about the
crookedness, areas, lengths, centres of gravity of curves, etc.; nor is it. ..
limited to equations which are free from surd quantities, This method I
have interwoven with that other of working in equations, by reducing
them to infinite series.

Newton emphasized the use of infinite series because thereby he could treat
functions such as (1 + x)%2, whereas his predecessors had been limited on
the whole to rational algebraic functions.

In his Tractatus de Quadratura Curverum (Quadrature of Curves), a third
paper on the calculus, written in 1676 but published in 1704, Newton says
he has abandoned the infinitesimal or infinitely small quantity. He now
criticizes the dropping of terms involving o for, he says,

in mathematics the minutest errors are not to be neglected.... I con-
sider mathematical quantitics in this place not as consisting of very small
parts, but as described by a continual motion. Lines are described, and
thereby gencrated, not by the apposition of parts, but by the continued
motion of points; superficics by the motion of lines; solids by the motions
of superficics; angles by the rotation of the sides; portions of time by
continued flux....

Fluxions are, as near as we please, as the increments of fluents
gencrated in times, equal and as small as possible, and to speak accurately,
they are in the prime ratio of nascent increments; yet they can be
expressed by any lines whatever, which are proportional to them.

Newton’s new concept, the method of prime and ultimate ratio, amounts
to this. He considers the function y = x*. To find the fluxion of y or #*, let
x “by flowing” become x + ¢. Then x* becomes

(x+0)* =2 + o~ 4 2 1 —5 N

2 _
The increases of x and y, namely, ¢ and noxn-1 4 = 5 R o3x"=2 4 ... are

to each other as (dividing both by o)

2 _
1 to nx"-? +" 5 R oxn-3 4oee.

“Let now the increments vanish and their last proportion will be”
1 to nx*-1,
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Then the fluxion of x is to the fluxion of x" as 1 to nx"~? or, as we would
say today, the rate of change of y with respect to x is nx* =1, This is the prime
ratio of the nascent increments. Of course the logic of this version is no
better than that of the preceding two; nevertheless Newton says this method
is in harmony with the geometry of the ancients and that it is not necessary
to introduce infinitely small quantities.

Newton also gave a geometrical interpretation. Given the data in
Figure 17.14, suppose bc moves to BC so that ¢ coincides with C. Then the
curvilinear triangle CEc is ““in the last form” similar to triangle CET, and
its “evanescent” sides will be proportional to CE, ET, and CT. Hence the
fluxions of the quantities AB, BC, and AC are, in the last ratio of their
evanescent increments, proportional to the sides of the triangle CET or
triangle VBC.

In the Method of Fluxions Newton made a number of applications of
fluxions to differentiating implicit functions and to finding tangents of
curves, maxima and minima of functions, curvature of curves, and points
of inflection of curves. He also obtained areas and lengths of curves. In
connection with curvature, he gave the correct formula for the radius of
curvature, namely,

+f)m

where i is taken as 1. He also gave this same quantity in polar coordinates.
Finally, he included a brief table of integrals.

Newton did not publish his basic papers in the calculus until long after
he had written them. The earliest printed account of his theory of fluxions
appeared in Wallis’s Algebra (2nd ed. in Latin, 1693), of which Newton
wrote pages 390 to 396. Had he published at once he might have avoided the
controversy with Leibniz on the priority of discovery.

Newton’s first publication involving his calculus is the great Mathe-
matical Principles of Natural Philosophy.® So far as the basic notion of the

8. The third edition was translated into English by Andrew Motte in 1729. This cdition,

revised and edited by Florian Cajori, was published by the University of California Press
in 1946.

C

THE WORK OF NEWTON 365

calculus, the fluxion, or, as we say, the derivative, is concerned, Newton
makes several statements. He rejects infinitesimals or ultimate indivisible
quantities in favor of “evanescent divisible quantities,” quantities which
can be diminished without end. In the first and third editions of the Principia
Newton says, “Ultimate ratios in which quantities vanish are not, strictly
speaking, ratios of ultimate quantities, but limits to which the ratios of these
quantities, decreasing without limit, approach, and which, though they can
come nearer than any given difference whatever, they can neither pass over
nor attain before the quantities have diminished indefinitely.”® This is the
clearest statement he ever gave as to the meaning of his ultimate ratio.
Apropos of the preceding quotation, he also says, *By the ultimate velocity
is meant that with which the body is moved, neither before it arrives at its
last place, when the motion ceases, nor after; but at the very instant when it
arrives. . .. And, in like manner, by the ultimate ratio of evanescent quan-
tities is to be understood the ratio of quantities, not before they vanish, nor
after, but that with which they vanish.”

In the Principia Newton used geometrical methods of proof. However, in
what are called the Portsmouth Papers, containing unpublished work, he
used analytical methods to find some of the theorems. These papers show
that he also obtained analytically results beyond those he was able to trans-
late into geometry. One reason he resorted to geometry is believed to be that
the proofs would be more understandable to his contemporaries. Another is
that he admired Huygens’s geometrical work immensely and hoped to equal
it. In these geometrical proofs Newton uses the basic limit processes of the
calculus. Thus the area under a curve is considered essentially as the limit
of the sum of the approximating rectangles, just as in the calculus today.
However, instead of calculating such areas, he uses this concept to compare
areas under different curves.

He proves that, when AR and BR (Fig. 17.15) are the perpendiculars
to the tangents at A and B of the arc ACB, the ultimate ratio, when B
approaches and coincides with 4, of any two of the quantities chord 438,
arc ACB, and 4D, is 1. Hence he says in Corollary 3 to Lemma 2 of Book I,
“And therefore in all our reasoning about ultimate ratios, we may freely use
any one of these lines for any other.” He then proves that when B approaches
and coincides with 4, the ratio of any two triangles (areas) RAB, RACB,
and RAD will be 1. “And hence in all reasonings about ultimate ratios, we
may usc any one of these triangles for any other.”- Also, (Fig. 17.16) let BD
and CE be perpendicular to AE (which is not necessarily tangent to arc ABC
at 4). When B and C approach and coincide with 4, the ultimate ratio of the
areas ACE and ABD will equal the ultimate ratio of 4E? to 4D

The Principia contains a wealth of results, some of which we shall note.

9. Third edition, p. 39.
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Though the book is devoted to celestial mechanics, it has enormous impor-
tance for the history of mathematics, not only because Newton’s own work on
the calculus was motivated in large part by his overriding interest in the
problems treated therein, but because the Principia presented new topics and
approaches to problems that were explored during the next hundred years
in the course of which an enormous amount of analysis was created.

The Principia is divided into three books.!° In a prefatory section Newton
defines concepts of mechanics such as inertia, momentum, and force, then
states the three famous axioms or laws of motion. In his words, they are:

Law I. Every body continues in its state of rest, or of uniform motion in a
right line, unless it is compelled to change that state by forces impressed
upon it.

Law II. The change [in the quantity] of motion is proportional to the motive
power impressed ; and is made in the direction of the right line in which that
force is impressed.

By quantity of motion Newton means, as he has explained earlier, the
mass times the velocity. Hence the change in-motion, if the mass is constant,
is the change in velocity, that is, the acceleration. This second law is now
often written as F = ma, when the force F is in poundals, the mass m is in
pounds, and the acceleration a is in feet per second per second. Newton’s
second law is really a vector statement; that is, if the force has components in,
say, three mutually perpendicular directions, then each component causes an
acceleration in its own direction. Newton did use the vector character of
force in particular problems, but the full significance of the vector nature of

10. All references are to the edition mentioned in note 8.
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the law was first fully recognized by Euler. This law incorporates the key
change from the mechanics of Aristotle, which affirmed that force causes
velocity. Aristotle had also affirmed that a force is nceded to maintain
velocity. Law I denies this.

Law III. To every action there is always opposed an equal reaction. . ..

We shall not digress into the history of mechanics except to note that
the first two laws are more explicit and somewhat generalized statements of
the principles of motion previously discovered and advanced by Galileo and
Descartes. The distinction between mass, that is, the resistance a body offers
to a change in its motion, and weight, the force gravity excrts on the mass of
any object, is also due to these men; and the vector character of force
generalizes Galileo’s principle that the vertical and horizontal motions of a
projectile, for example, can be treated independently.

Book I of the Principia begins with some theorems of the calculus,
including the ones involving ultimate ratios cited above. It then discusses
motion under central forces, that is, forces that always attract the moving
object to one (fixed) point (the sun in practice), and proves in Proposition 1
that equal areas are swept out in equal time (which encompasses Kepler’s
law of areas). Newton considers next the motion of a body along a conic
section and proves (Props. 11, 12, and 13) that the force must vary with the
inverse square of the distance from some fixed point. He also proves the
converse, which contains Kepler’s first law. After some treatment of cen-
tripetal force, he deduces Kepler’s third law (Prop. 15). There follow two
sections devoted to properties of the conic sections. The principal problem is
the construction of conics that satisfy five given conditions; in practice these
are usually observational data. Then, given the time an object has been in
motion along a conic section, he determines its velocity and position. He
takes up the motion of the apse lines, that is, the lines joining the center of
attraction (at one focus) to the maximum or minimum distance of a body
moving along a conic that is itself rotating at some rate about the focus.
Section 10 is devoted to the motion of bodies along surfaces with special
reference to pendulum motion. Here Newton gives due acknowledgment to
Huygens. In connection with the accelerating effect of gravity on motions, he
investigates geometrical properties of cycloids, epicycloids, and hypocycloids
and gives the length of the epicycloid (Prop. 49).

In Section 11 Newton deduces from the laws of motion and the law of
gravitation the motion of two bodics, cach attracting the other in accordance
with the gravitational force. Their motion is reduced to the motion of one
around the fixed second body. The moving body traverses an ellipse.

He then considers the attraction exerted by spheres and spheroids of
uniform and varying density on a particle. He gives (Sec. 12, Prop. 70) a
geometrical proof that a thin homogeneous spherical shell exerts no force on
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a particle in its interior. Since this result holds for a thin shell, it holds for a
sum of such shells, that is, for a shell of finite thickness. (He proves later
[Prop. 91, Cor. 3] that the same result holds for a homogeneous ellipsoidal
shell, that is, a shell contained between two similar ellipsoidal surfaces,
similarly placed.) Proposition 71 shows that the attraction of a thin homo-
geneous spherical shell on an external particle is equivalent to the attraction
that would be exerted if the mass of the shell were concentrated at the center,
so that the shell attracts the external particle toward the center and with a
force varying inversely as the square of the distance from the center. Proposi-
tion 73 shows that a solid homogeneous sphere attracts a particle inside with
a force proportional to the particle’s distance from the center. As for the
attraction that a solid homogeneous sphere exerts on an external point,
Proposition 74 shows that it is the same as if the mass of the sphere were
concentrated at its center. Then if two spheres attract each other, the first
attracts every particle of the second as if the mass of the first were concen-
trated at its center. Thus the first sphere becomes a particle attracted by the
distributed mass of the second; hence the second sphere can also be treated
as a particle with its mass concentrated at its center. Thus both spheres can
be treated as particles with their masses concentrated at their respective
centers. All these results, original with Newton, are extended to spheres
whose densities are spherically symmetric and to other laws of attraction in
addition to the inverse square law.

Newton next takes up the motion of three bodies, each attracting the
other two, and obtains some approximate results. The problem of the motion
of three bodies has been a major one since Newton’s time and has not as yet
been solved exactly.

The second book of the Principia is devoted to the motion of bodies in
resisting media such as air and liquids. It is the beginning of the subject of
hydrodynamics. Newton assumes in some problems that the resistance of the
medium is proportional to the velocity and in others to the square of the
velocity of the moving body. He considers what shape a body must have to
encounter least resistance (see Chap. 24, sec. 1). He also considers the motion
of pendulums and projectiles in air and in fluids. A section is devoted to the
theory of waves in air (e.g., sound waves) and he obtains a formula for the
velocity of sound in air. He also treats the motion of waves in water. Newton
continues with a description of experiments he made to determine the
resistance fluids offer to bodies moving in them. One major conclusion is
that the planets move in a vacuum. In this book Newton broke entirely new
ground; however, the definitive work on fluid motion was yet to be done

Book III, entitled On the System of the World, contains the application of
the general theory developed in Book I to the solar system. It shows how
the sun’s mass can be calculated in terms of the earth’s mass, and that the
mass of any planet having a satellite can be found in the same way. He
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calculates the average density of the earth and finds it to be between 5 and 6
times that of water (today’s figure is about 5.5).

He shows that the earth is not a true sphere but an oblate spheroid and
calculates the flattening; his result is that the ellipticity of the oblate spheroid
is 1/230 (the figure today is 1/297). From the observed oblateness of any
planet, the length of its day is then calculated. Using the amount of flattening
and the notion of centripetal force, Newton computes the variation of the
earth’s gravitational attraction over the surface and thus the variation in the
weight of an object. He proves that the attractive force of a spheroid is not
the same as if the sphercid’s mass were concentrated at its center.

He then accounts for the precession of the equinoxes. The explanation is
based on the fact that the earth is not spherical but bulges out along the
equator. Consequently the gravitational attraction of the moon on the earth
does not effectively act on the center of the earth but forces a periodic change
in the direction of the earth’s axis of rotation. The period of this change was
calculated by Newton and found to be 26,000 years, the value obtained by
Hipparchus by inference from observations available to him.

Newton explained the main features of the tides (Book I, Prop 66,
Book III, Props. 36, 37). The moon is the main cause; the sun, the second.
Using the sun’s mass he calculated the height of the solar tides. From the
observed heights of the spring and neap tides (sun and moon in full con-
junction or full opposition) hc determined the lunar tide and made an
estimate of the mass of the moon. Newton also managed to give some
approximate treatment of the effect of the sun on the moon’s motion around
the earth. He determined the motion of the moon in latitude and longitude;
the motion of the apse line (the line from the center of the earth to the
maximum distance of the moon); the motion of the nodes (the points in
which the moon’s path cuts the plane of the earth’s orbit; these points
regress, that is, move slowly in a direction opposite to the motion of the
moon itself) ; the evection (a periodic change in the eccentricity of the moon’s
orbit) ; the annual equation (the effect on the moon’s motion of the daily
change in distance between the earth and the sun); and the periodic change
in the inclination of the plane of the moon’s orbit to the plane of the earth’s
orbit. There were seven known irregularities in the motion of the moon and
Newton discovered two more, the inequalities of the apogee (apse line) and
of the nodes. His approximation gave only half of the motion of the apse line.
Clairaut in 1752 improved the calculation and obtained the full 3° of
rotation of the apse line; however, much later John Couch Adams found the
correct calculation in Newton’s papers. Finally Newton showed that the
comets must be moving under the gravitational attraction of the sun because
their paths, determined on the basis of observations, are conic sections.
Newton devoted a great deal of time to the problem of the moon’s motion
because, as we noted in the preceding chapter, the knowledge was needed to
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improve the method of determining longitude. He worked so hard on this
problem that he complained it made his head ache.

4. The Work of Leibniz

Though his contributions were quite different, the man who ranks with
Newton in building the calculus is Gottfried Wilhelm Leibniz (1646-1716).
He studied law and, after defending a thesis on logic, received a Bachelor of
Philosophy degree. In 1666, he wrote the thesis De Arte Combinatoria (On the
Art of Combinations),* a work on a universal method of reasoning; this
completed his work for a doctorate in philosophy at the University of
Altdorf and qualified him for a professorship. During the years 1670 and
1671 Leibniz wrote his first papers on mechanics, and, by 1671, had produced
his calculating machine. He secured a job as an ambassador for the Elector
of Mainz and in March of 1672 went to Paris on a political mission. This
visit brought him into contact with mathematicians and scientists, notably
Huygens, and stirred up his interest in mathematics. Though he had done a
little reading in the subject and had written the paper of 1666, he says he
knew almost no mathematics up to 1672. In 1673 he went to London and
met other scientists and mathematicians, including Henry Oldenburg, at that
time secretary of the Royal Society of London. While making his living as a
diplomat, he delved further into mathematics and read Descartes and Pascal.
In 1676 Leibniz was appointed librarian and councillor to the Elector of
Hanover. Twenty-four years later the Elector of Brandenburg invited
Leibniz to work for him in Berlin. While involved in all sorts of political
maneuvers, including the succession of George Ludwig of Hanover to the
English throne, Leibniz worked in many fields and his side activities covered
an enormous range. He died neglected in 1716.

In addition to being a diplomat, Leibniz was a philosopher, lawyer,
historian, philologist, and pioneer geologist. He did important work in logic,
mechanics, optics, mathematics, hydrostatics, pneumatics, nautical science,
and calculating machines. Though his profession was jurisprudence, his work
in mathematics and philosophy is among the best the world has produced.
He kept contact by letter with people as far away as China and Ceylon. He
tried endlessly to reconcile the Catholic and Protestant faiths. It was he who
proposed, in 1669, that a German Academy of Science be founded; finally
the Berlin Academy was organized in 1700. His original recommendation
had been for a society to make inventions in mechanics and discoveries in
chemistry and physiology that would be useful to mankind ; Leibniz wanted
knowledge to be applied. He called the universities “monkish” and charged
that they possessed learning but no judgment and were absorbed in trifles.

11. Published 1690 = Die philosophischs Schriften, 4, 27-102,
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Instead he urged the pursuit of real knowledge—mathematics, physics,
geography, chemistry, anatomy, botany, zoology, and history. To Leibniz
the skills of the artisan and the practical man were more valuable than the
learned subtleties of the professional scholars. He favored the German
language over Latin because Latin was allied to the older, useless thought.
Men mask their ignorance, he said, by using the Latin language to impress
people. German, on the other hand, was understood by the common people
and could be developed to help clarity of thought and acuteness of reasoning.

Leibniz published papers on the calculus from 1684 on, and we shall
say more about them later. However, many of his results, as well as the
development of his ideas, are contained in hundreds of pages of notes made
from 1673 on but never published by him. These notes, as one might expect,
jump from one topic to another and contain changing notation as Leibniz’s
thinking developed. Some are simply ideas that occurred to him while
reading books or articles by Gregory of St. Vincent, Fermat, Pascal, Descartes,
and Barrow or trying to cast their thoughts into his own way of approaching
the calculus. In 1714 Leibniz wrote Historia et Origo Calculi Differentialis, in
which he gives an account of the development of his own thinking. However,
this was written many years after he had done his work and, in view of the
weaknesses of human memory and the greater insight he had acquired by
that time, his history may not be accurate. Since his purpose was to defend
himself against an accusation of plagiarism, he might have distorted un-
consciously his account of the origins of his ideas.

Despite the confused state of Leibniz’s notes we shall examine a few,
because they reveal how one of the greatest intellects struggled to understand
and create. By 1673 he was aware of the important direct and inverse
problem of finding tangents to curves; he was also quite sure that the inverse
method was equivalent to finding areas and volumes by summations. The
somewhat systematic development of his ideas begins with notes of 1675.
However, it seems helpful, in order to understand his thinking, to note that
in his De Arte Combinatoria he had considered sequences of numbers, first
differences, second differences, and higher-order differences, Thus for the
sequence of squares

0,1, 4,9, 16, 25, 36,
the first differences are
1,35,7,911
and the second differences are
2,2,2,2,2,2

Leibniz noted the vanishing of the second differences for the sequence of
natural numbers, the third differences for the sequence of squares, and so on.
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He also observed, of course, that if the original sequence starts from 0, the
sum of the first differences is the last term of the sequence.

To relate these facts to the calculus he had to think of the sequence of
numbers as the y-values of a function and the difference of any two as the
difference of two nearby y-values. Initially he thought of » as representing
the order of the term in the sequence and y as representing the value of that
term.

The quantity dx, which he often writes as 4, is then 1 because it is the
difference of the orders of two successive terms, and dy is the actual difference
in the values of two successive terms. Then using omn. as an abbreviation
for the Latin omnia, to mean sum, and using { for dy, Leibniz concludes that
omn. [ = y, because omn. [ is the sum of the first differences of a sequence
whose terms begin with 0 and so gives the last term. However, omn. y!
presents a new problem. Leibniz obtains the result that omn. gl is /2 by
thinking in terms of the function y = x. Thus, as Figure 17.17 shows, the
area of triangle ABC is the sum of the y! (for “small” {) and it is also y3/2.
Leibniz says, ““Straight lines which increase from nothing each multiplied
by its corresponding element of increase form a triangle.” These few facts
already appear, among more complicated ones, in papers of 1673.

In the next stage he struggled with several difficulties. He had to make
the transition from a discrete series of values to the case where dy and dx are
increments of an arbitrary function y of x. Since he was still tied to sequences,
wherein x is the order of the term, his a or dx was 1; so he inserted and omitted
a freely. When he made the transition to the dy and dx of any function, this
a was no longer 1. However, while still struggling with the notion of summa-
tion he ignored this fact.

Thus in a manuscript of October 29, 1675, Leibniz starts with

(7 omn. y/ = omn.omn. { é,
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which holds because y itself is omn. /. Here he divides ! by a to preserve
dimensions. Leibniz says that (7) holds, whatever ! may be. But, as we saw
in connection with Figure 17.17,

2
(8) omn.yl = -"5
Hence from (7) and (8)
¥ _ omnoma it
9 5 omn.omn. la

In our notation, he has shown that

¢ [{ja)g- it

Leibniz says that this result is admirable.
Another theorem of the same kind, which Leibniz derived from a
geometrical argument, is

(10) omn. ! = x omn. [ — omn.omn. [,

where [ is the difference in values of two successive terms of a sequence and
x is the number of the term. For us this equation is

fxdy =y - fy dx.
Now Leibniz lets [ itself in (10) be x, and obtains
omn. x3 = xomn. ¥x — omn.omn. x.

But omn. x, he says, is £#%/2 (he has shown that omn. y{ is y3/2). Hence

%3
omn. x2 = *% — omn. 5+

By transposing the last term he gets

omn. x? = %a

In this manuscript of October 29, 1675, Leibniz decided to write | for
omn., so that
fl:omn.l and Ix.—.’;.

The symbol f is an elongated § for *“sum.”
Leibniz realized rather early, probably from studying the work of
Barrow, that differentiation and integration as a summation must be
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inverse processes; so area, when differentiated, must give a length. Thus, in
the same manuscript of October 29, Leibniz says, “Given [ and its relation
to x, to find _[l.” Then, he says, “Suppose that J' ! = ya. Let ! = ya/d.
[Here he puts d in the denominator. It would mean more to us if he wrote
! = d(ya).] Then just as I will increase, so d will diminish the dimensions.
But f means a sum, and d, a difference. From the given y we can always find
y/d or [, that is, the difference of the y’s. Hence one equation may be trans-
formed into the other; just as from the equation

[e]m =L

_ cj'fs”
GJ.[ =m'

we can obtain the equation

In this early paper Leibniz seems to be exploring the gperations of [ and
d and sees that they are inverses. He finally realizes that I does not raise
dimension nor d lower it, because J' is really a summation of rectangles, and
50 a sum of areas. Thus he recognizes that, to get back to dy from y, he must
form the difference of y’s or take the differential of y. Then he says, “Butf
means a sum and d a difference.” This may have been a later insertion.
Hence a couple of weeks afterwards, in order to get from y to dy, he changes
from dividing by d to taking the differential of y, and writes dy.

Up to this point Leibniz had been thinking of the y-values as values of
terms of a sequence and of x usually as the order of these terms, but now, in
this paper, says, “All these theorems are true for series in which the dif-
ferences of the terms bear to the terms themselves a ratio that is less than any
assignable quantity.” That is, dyfy may be less than any assignable quantity.

In a manuscript dated November 11, 1675, entitled “ Examples of the
inverse method of tangents,” Leibniz usaf for the sum and x/d for difference.
He then says x/d is dx, the difference of two consecutive x-values, but ap-
parently here dx is a constant and equal to unity.

From barely intelligible arguments such as the above, Leibniz asserted
the fact that inlegration as a summation process is the inverse of differentiation. This
idea is in the work of Barrow and Newton, who obtained areas by anti-
differentiation, but it is first expressed as a relation between summation and
differentiation by Leibniz. Despite this outright assertion, he was by no
means clear as to how to obtain an area from what one might loosely write as
2.y dx—that is, how to obtain an area under a curve from a set of rectangles.
Of course this difficulty beset all the seventeenth-century workers. Not pos-
sessing a clear concept of a limit, or even clear notions about area, Leibniz
thought of the latter sometimes as a sum of rectangles so small and so
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numerous that the difference between this sum and the true area under the
curve could be neglected, and at other times as a sum of the ordinates or
y-values. This latter concept of area was common, especially among the
indivisibilists, who thought that the ultimate unit of area and the y-value
were the same.

With respect to differentiation, even after recognizing that dy and d¢
can be arbitrarily small quantities, Leibniz had yet to overcome the funda-
mental difficulty that the ratio dy/dx is not quite the derivative in our sense.
He based his argument on the characteristic triangle, which Pascal and
Barrow had also used. This triangle (Fig. 17.18) consists of 4y, dx, and the
chord PQ, which Leibniz also thought of as ths curve between P and Q and part
of the tangent at T. Though he speaks of this triangle as indefinitely small, he
maintains nevertheless that it is similar to a definite triangle, namely, the
triangle STU formed by the subtangent SU, the ordinate at T, and the
length of tangent ST. Hence dy and dx are ultimate elements, and their ratio
has a definite meaning, In fact, he uses the argument that, from the similar
triangles PRQ and SUT, dy/dx = TU|SU.

In the manuscript of November 11, 1675, Leibniz shows how he can
solve a definite problem. He secks the curve whose subnormal is inversely
proportional to the ordinate. In Figure 17.18, the normal is TV and the
subnormal p is UV. From the similarity of triangles PRQ and TUV, he has

dy

a9 _»2
vy

or

pdx =ydy.
But the curve has the given property
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where 5 is the proportionality constant. Hence

dx=—b-dy.
. Then
fo-[§o
or
s

Leibniz also solved other inverse tangent problems.

In a paper of June 26, 1676, he realizes that the best method of finding
tangents is to find dy/dx, where dy and dx are differences and dy/dx is the
quotient. He ignores dx-dx and higher powers of dx.

By November of 1676, he is able to give the general rules dx* =
nx*~ d for integral and fractional nand [ 2* = x**!/n + 1, and says, “The
reasoning is general, and it does not depend upon what the progressions
of the x’s may be.” Here x still means the order of the terms of a sequence.
In this manuscript he also says that to differentiate Va + bz + ¢z?, let
a + bz + ¢z? = x, differentiate Vx, and multiply by dx/dz. This is the
chain rule.

By July 11, 1677, Leibniz could give the correct rules for the differential
of sum, difference, product, and quotient of two functions and for powers and
roots, but no proofs. In the manuscript of November 11, 1675, he had
struggled with d(us) and d(ufv), and thought that d(uv) = du do.

In 1680, dx has become the difference of abscissas and dy the differences
in the ordinates. He says, **. .. now these dx and dy are taken to be infinitely
small, or the two points on the curve are understood to be a distance apart
that is less than any given length....” He calls dy the “momentaneous
increment” in y as the ordinate moves along the x-axis. But PQ in Figure
17.18 is still considered part of a straight line. It is “an element of the curve
or a side of the infinite-angled polygon that stands for the curve....” He
continues to use the usual differential form. Thus, if y = a3/x, then

a3
dy = —Fdx.

He also says that differences are the opposite to sums. Then, to get the area
under a curve (Fig. 17.19), he takes the sum of the rectangles and says one
can neglect the remaining “triangles, since they are infinitely small com-
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Figure 17.19

pared to the rectangles ... thus I represent in my calculus the area of the
figure byf y dx....” He also gives, for the element of arc,

ds = Vd® + dy?;

and, for the volume of a solid of revolution obtained by revolving a curve
around the x-axis,

V=1rfy2dx.

Despite prior statements that dx and dy are small differences, he still
talks about sequences. He says, “Differences and sums are the inverses of
one another, that is to say, the sum of the differences of a series [sequence] is
a term of the series, and the difference of the sums of a series is a term of the

series, and 1 enumerate the former thus, f dx = x, and the latter thus,
df s = dx” In fact, in a manuscript written after 1684, Leibniz says his
method of infinitesimals has become widely known as the calculus of
differences.

Leibniz’s first publication on the calculus is in the Acla Eruditorum of
1684.12 In this paper the meaning of dy and dx is still not clear. He says in one
place, let dx be any arbitrary quantity, and dy is defined by (see Fig. 17.18)

dy:dx = y:subtangent.

This definition of dy presumes some expression for the subtangent; hence the
definition is not complete. Moreover, Leibniz’s definition of tangent as a line
joining two infinitely near points is not satisfactory.

He also gives in this paper the rules he had obtained in 1677 for the
differential of the sum, product, and quotient of two functions and the rule
for finding d(x"). In this last case he sketches the proof for positive integral n
but says the rule is true for all n; for the other rules he gives no proofs. He
makes applications to finding tangents, maxima and minima, and points of
inflection. This paper, six pages long, is so unclear that the Bernoulli
brothers called it “an enigma rather than an explication,”1?

12. Acta Erud., 3, 1684, 467-73 = Math. Schriften, 5, 220-26.
13. Lcibniz: Math. Schrifien, 3, Part 1, 5.
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In a paper of 1686¢ Leibniz gives
dx
=VE -8 J' =
A b ey

as the equation of the cycloid. His point here is to show that by his methods
and notation some curves can be expressed as equations not obtainable in
other ways. He reaffirms this in his Historia where he says that his dx, ddx
(second difference), and the sums that are the inverses of these differences
can be applied to all functions of x, not excepting the mechanical curves of
Vieta and Descartes, which Descartes had said have no equations. Leibniz
also says that he can include curves that Newton could not handle even with
his method of series.

In the 1686 paper as well as in subsequent papers,!® Leibniz gave the
differentials of the logarithmic and exponential functions and recognized
exponential functions as a class. He also treated curvature, the osculating
circle, and the theory of envelopes (see Chap. 23). In a letter to John
Bernoulli of 1697, he differentiated under the integral sign with respect to a
parameter. He also had the idea that many indefinite integrals could be
evaluated by reducing them to known forms and speaks of preparing tables
for such reductions—in other words, a table of integrals. He tried to define
the higher-order differentials such as ddy (d%) and dddy (d®), but the defini-
tions were not satisfactory. Though he did not succeed, he also tried to find
a meaning for d° where « is any real number.

With respect to notation, Leibniz worked painstakingly to achieve the
best. His dx, dy, and dy/dx are, of course, still standard. He introduced the
notation log x, d" for the nth differential, and even d~! and d~* for I and
the nth iteration of summation, respectively.

In general Leibniz’s work, though richly suggestive and profound, was
so incomplete and fragmentary that it was barely intelligible. Fortunately,
the Bernoulli brothers, James and John, who were immensely impressed and
stirred by Leibniz’s ideas, elaborated his sketchy papers and contributed an
immense number of new developments we shall discuss later. Leibniz agreed
that the calculus was as much theirs as his.

5. A Comparison of the Work of Newton and Leibniz

Both Newton and Leibniz must be credited with secing the calculus as a
new and general method, applicable to many types of functions. After their
work, the calculus was no longer an appendage and extension of Greek
geometry, but an independent science capable of handling a vastly expanded
range of problems.

14. Acta Erud., 5, 1686, 292-300 = Math. Schrifien, 5, 226-33.

15.. Acta Erud., 1692, 168-71 = Math. Schrifien, 5, 266-69; Acta Erud., 1694 = Math.
Schrifien, 5, 301-6.
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Both also arithmetized the calculus; that is, they built on algebraic
concepts. The algebraic notation and techniques used by Newton and Leib-
niz not only gave them a more effective tool than geometry, but also per-
mitted many different geometric and physical problems to be treated by the
same technique. A major change from the beginning to the end of the
seventeenth century was the algebraicization of the calculus. This is com-
parable to what Vieta had done in the theory of equations and Descartes and
Fermat in geometry.

The third vital contribution that Newton and Leibniz share is the
reduction to antidifferentiation of area, volume, and other problems that
were previously treated as summations. Thus the four main problems—
rates, tangents, maxima and minima, and summation—were all reduced to
differentiation and antidifferentiation.

The chief distinction between the work of the two men is that Newton
used the infinitely small increments in x and y as a means of determining
the fluxion or derivative. It was essentially the limit of the ratio of the in-
crements as they became smaller and smaller. On the other hand, Leibniz
dealt directly with the infinitely small increments in x and y, that is, with
differentials, and determined the relationship between them. This difference
reflects Newton’s physical orientation, in which a concept such as velocity is
central, and Leibniz’s philosophical concern with ultimate particles of
matter, which he called monads. As a consequence, Newton solved area and
volume problems by thinking entirely in terms of rate of change. For him
differentiation was basic; this process and its inverse solved all calculus
problems, and in fact the use of summation to obtain an area, volume, or
center of gravity rarely appears in his work. Leibniz, on the other hand,
thought first in terms of summation, though of course these sums were
evaluated by antidifferentiation.

A third distinction between the work of the two men lies in Newton’s
free use of series to represent functions; Leibniz preferred the closed form.
In a letter to Leibniz of 1676, Newton stressed the use of series even to solve
simple differential equations. Though Leibniz did use infinite series, he
replied that the real goal should be to obtain results in finite terms, using the
trigonometric and logarithmic functions where algebraic functions would
not serve. He recalled to Newton James Gregory’s assertion that the rectifi-
cation of the ellipse and hyperbola could not be reduced to the circular and
logarithmic functions and challenged Newton to determine by the use of
series whether Gregory was correct. Newton replied that by the use of series
he could decide whether some integrations could be achieved in finite terms,
but gave no criteria. Again, in a letter of 1712 to John Bernoulli, Leibniz
objected to the expansion of functions into series and stated that the calculus
should be concerned with reducing its results to quadratures (integrations)
and, where necessary, quadratures involving transcendental functions.
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There are differences in their manner of working. Newton was empirical,
concrete, and circumspect, whereas Leibniz was speculative, given to gener-
alizations, and bold. Leibniz was more concerned with operational formulas
to produce a calculus in the broad sense; for example, rules for the dif-
ferential of a product or quotient of functions, his rule for d*(u) (z and »
being functions of x), and a table of integrals. It was Leibniz who set the
canons of the calculus, the system of rules and formulas. Newton did not
bother to formulate rules, even when he could easily have generalized his
concrete results. He knew that if z = up, then 2 = w + v, but did not point
out this general result. Though Newton initiated many methods, he did not
stress them. His magnificent applications of the calculus not only demon-
strated its value but, far more than Leibniz’s work, stimulated and deter-
mined almost the entire direction of eighteenth-century analysis. Newton
and Leibniz differed also in their concern for notation. Newton attached no
importance to this matter, while Leibniz spent days choosing a suggestive
notation.

6. The Controversy over Priority

Nothing of Newton’s work on the calculus was published before 1687,
though he had communicated results to friends during the years 1665 to
1687. In particular, he had sent his tract De Analysi in 1669 to Barrow, who
had sent it to John Collins. Leibniz visited Paris in 1672 and London in 1673
and communicated with some of the people who knew Newton’s work.
However, he did not publish on the calculus until 1684. Hence the question
of whether Leibniz had known the details of what Newton did was raised,
and Leibniz was accused of plagiarism. However, investigations made long
after the deaths of the two men show that Leibniz was an independent
inventor of major ideas of the calculus, though Newton did much of his work
before Leibniz did. Both owe much to Barrow, though Barrow used geo-
metrical methods almost exclusively. The significance of the controversy lies
not in the question of who was the victor but rather in the fact that the
mathematicians took sides. The Continental mathematicians, the Bernoulli
brothers in particular, sided with Leibniz, while the English mathematicians
defended Newton. The two groups became unfriendly and even bitter toward
each other; John Bernoulli went so far as to ridicule and inveigh against
the English.

As a result, the English and Continental mathematicians ceased ex-
changing ideas. Because Newton’s major work and first publication on the
calculus, the Principia, used geometrical methods, the English continued to
use mainly geometry for about a hundred years after his death. The Conti-
nentals took up Leibniz’s analytical methods and extended and improved
them. These proved to be far more effective; so not only did the English
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mathematicians fall behind, but mathematics was deprived of contributions
that some of the ablest minds might have made.

7. Some Immediate Additions to the Calculus

The calculus is of course the beginning of that most weighty part of mathe-
matics generally referred to as analysis. We shall be following the important
developments of this field in succeeding chapters; we might note here, how-
ever, some additions that were made immediately after the basic work of
Newton and Leibniz,

In his Arithmetica Universalis (1707) Newton established a theorem on the
upper bound to the real roots of polynomial equations. The theorem says:
A number a is an upper bound of the real roots of f(x) = 0 if, when a is
substituted for x, it gives to f(x) and to all its derivatives the same sign.

In his De Analysi and Method of Fluxions, he gave a general method of
approximating the roots of f(x) = 0, which was published in Wallis’s
Algebra of 1685. In his tract Analysis Aequationum Universalis (1690), Joseph
Raphson (1648-1715) improved on this method; though he applied it only
to polynomials, it is much more broadly useful. It is this medification that is
now known as Newton’s method or the Newton-Raphson method. It consists
in first choosing an approximation a. Then calculate a — f(a)[f'(a). Call
this b, and calculate & — f(b)/f’(b). Call this last result ¢, and so forth. The
numbers g, b, ¢, . . . are successive approximations to the root. (The notation
is modern.) Actually the method does not necessarily give better and better
approximations to the root. J. Raymond Mourraille showed in 1768 that a
must be chosen so that the curve of y = f(x) is convex toward the axis of x
in the interval between a and the root. Much later Fourier discovered this
fact independently.

In his Démonstration d’une méthode pour résoudre les égalitéz de tous les dégrez
(16191), Michel Rolle (1652-1719) gave the famous theorem now named
after him, namely, that if a function is 0 at two values of x, say, a and b,
then the derivative is 0 at some value of x between a and 6. Rolle stated the
theorem but did not prove it.

After Newton and Leibniz the two most important founders of the
calculus were the Bernoulli brothers, James and John. James (= Jakob =
Jacques) Bernoulli (1655-1705) was self-taught in mathematics and so
matured slowly in that subject. At the urging of his father he studied for the
ministry, but eventually turned to mathematics, and in 1686 became a
professor at the University of Basle. His chief interests thereafter were mathe-
matics and astronomy. When, in the late 1670s, he began to work on
mathematical problems, Newton’s and Leibniz’s work was still unknown to
him. He too learned from Descartes’s La Géométrie, Wallis’s Arithmetica
Infinitorum and Barrow’s Geometrical Lectures. Though he took much from
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Barrow, he put it into analytical form. He gradually became familiar with
Leibniz’s work, but because so little of the latter appeared in print, much of
what James did overlapped Leibniz’s results. Actually he, like the other
mathematicians of the time, did not fully understand Leibniz’s work.
. James’s activity is closely linked with that of his younger brother John
(= Johann = Jean, 1667-1748). John was sent into business by his father
but turned to medicine, while learning mathematics from his brother. He
became a professor of mathematics at Groningen in Holland and then
succeeded his brother at Basle.

Both James and John corresponded constantly with Leibniz, Huygens,
other mathematicians, and each other. All these men worked on many
common problems suggested in letters or posed as challenges. Since results,
too, were in those days often communicated in letters with or without sub-
sequent publication, the matter of priority is complicated. Sometimes credit
was claimed for a result that was announced even though no proof was
given at that time. The question is further complicated by the peculiar
relationships that developed. John was extremely anxious to secure fame and
began to compete with his brother; soon each was challenging the other on
problems. John did not hesitate to use unscrupulous means to appear to be
the discoverer of results he got from others, including his brother. James was
very sensitive and reacted in kind. Each published papers that owed much
to the other without acknowledging the origins of their ideas. John actually
became a vitriolic critic of his brother, and Leibniz tried to mediate between
the two. Though James had said earlier, while praising Barrow, that Leib-
niz’s work should not be depreciated, he became more and more distrustful
of Leibniz. Moreover, he resented Leibniz’s superior insights and thought
Leibniz was arrogant in pointing out that he had done things James thought
were original with himself. He became convinced that Leibniz sought only
to belittle his work and was favoring John in the disputes between the
brothers. When Nicholas Fatio de Duillier (1664-1753) gave Newton credit
for creating the calculus and became embroiled in controversy with Leibniz,
James wrote letters to Fatio opposing Leibniz.

As to the Bernoullis’ work in the calculus, they, too, tackled problems
such as finding the curvature of curves, evolutes (envelopes of the normals to
a curve), inflection points, the rectification of curves, and other basic calculus
topics. The results of Newton and Leibniz were extended to spirals of various
sorts, the catenary, and the tractrix, which was defined as the curve (Fig.
17.20) for which the ratio PT to OT is a constant. James also wrote five
major papers on series (Chap. 20, sec. 4), which extended Newton’s use of
series to integrate complicated algebraic functions and transcendental
functions. In 1691 both James and John gave the formula for the radius of
curvature of a curve. James called it his “golden theorem™ and wrote it as

z = dxds:ddy = dy ds:ddx
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where z is the radius of curvature. If we divide numerator and denominator
of each ratio by ds* we get
g = xlds _ dylds
d?ylds3 — d3x|ds3

which are more familiar forms. James also gave the result in polar coordi-
nates.
John produced a now-famous theorem for obtaining the limit approached
by a fraction whose numerator and denominator approach 0. This theorem
was incorporated by Guillaume F. A. I'Hospital (1661-1704), a pupil of
John, in an influential book on the calculus, the Analyse des infiniment petits
(1696), and is now known as L’Hospital’s rule.

8. The Soundness of the Calculus

From the very introduction of the new methods of finding rates, tangents,
maxima and minima, and so forth, the proofs were attacked as unsound.
Cavalieri’s use of indivisible ultimate elements and his arguments shocked
those who still respected logical rigor. To their criticism Cavalieri responded
that the contemporary geometers had been freer with logic than he—for
example, Kepler, in his Stereometria Doliorum. These geometers, he continued,
had been content in their calculation of areas to imitate Archimedes’ method
of summing lines, but had failed to give the complete proofs that the great
Greek had used to make his work rigorous. They were satisfied with their
calculations, provided only that the results were useful. Cavalieri felt justi-
fied in adopting the same point of view. He said that his procedures could
lead to new inventions-and that his method did not at all oblige one to
consider a geometrical structure as composed of an infinite number of
sections; it had no other object than to establish correct ratios between areas
or volumes. But these ratios preserved their sense and value whatever opinion
one might have about the composition of a continuum. In any case, said
Cavalieri, “rigor is the concern of philosophy and not of geometry.”
Fermat, Pascal, and Barrow recognized the looseness of their work on
summation but believed that one could make precise proofs in the manner of
Archimedes. Pascal, in Letters of Dettonville (1659), affirmed that the in-
finitesimal geometry and classical Greek geometry were in agreement. He
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concluded, “ What is demonstrated by the true rules of indivisibles could be
demonstrated also with the rigor and the manner of the ancients.” Further,
he said the method of indivisibles must be accepted by any mathematicians
who pretend to rank among geometers. It differs only in language from the
method of the ancients. Nevertheless, Pascal, too, had ambivalent feelings
about rigor. At times he argued that the heart intervenes to assure us of the
correctness of mathematical steps. The proper “finesse,” rather than geo-
metrical logic, is what is needed to do the correct work, just as the religious
appreciation of grace is above reason. The paradoxes of geometry as used in
the calculus are like the apparent absurdities of Christianity; and the indi-
visible in geometry has the same relation to the finite as man’s justice has to
God's.

The defenses Cavalieri and Pascal offered applied to the summation of
infinitely small quantities. As to the derivative, early workers such as Fermat
and Roberval thought they had a simple algebraic process that had a very
clear geometric interpretation and so could be justified by geometrical
arguments. Actually Fermat was careful not to assert general theorems when
he advanced any idea he could not justify by the method of exhaustion.
Barrow argued only geometrically and, despite his attacks on the algebraists
for their lack of rigor, was less scrupulous about the soundness of his geo-
metrical arguments.

Neither Newton nor Leibniz clearly understood nor rigorously defined
his fundamental concepts. We have already observed that both vacillated in
their definitions of the derivative and differentials. Newton did not really
believe that he had departed from Greek geometry. Though he used algebra
and coordinate geometry, which were not to his taste, he thought his under-
lying methods were but natural extensions of pure geometry. Leibniz, how-
ever, was a man of vision who thought in broad terms, like Descartes. He saw
the long-term implications of the new ideas and did not hesitate to declare
that a new science was coming to light. Hence he was not too concerned
about the lack of rigor in the calculus.

In response to criticism of his ideas, Leibniz made various, unsatisfactory
replies. In a letter to Wallis of March 30, 16901 he said:

It is useful to consider quantities infinitely small such that when their
ratio is sought, they may not be considered zero but which are rejected as
often as they occur with quantities incomparably greater. Thus if we have
x + dx, dx is rejected. But it is different if we seek the difference between
x + dx and x. Similarly we cannot have x dx and dx dx standing together.
Hence if we are to differentiate xy we write (x + dx)(y + dy) — xy =
xdy + ydx + dx dy. But here dx dy is to be rejected as incomparably less
than x dy 4 y dx. Thus in any particular case, the error is less than any
finite quantity.

16. Leibniz: Math. Schriften, 4, 63.
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As to the ultimate meanings of dy, dx and dy/dx, Leibniz remained vague.
He spoke of dx as the difference in x values between two infinitely near points
and of the tangent as the line joining such points. He dropped differentials
of higher order with no justification, though he did distinguish among the
various orders. The infinitely small dx and dy were sometimes described as
vanishing or incipient quantities, as opposed to quantities already formed.
These indefinitely small quantities were not zero, but were smaller than any
finite quantity. Alternatively he appealed to geometry to say that a higher
differential is to a lower one as a point is to a line!” or that dxisto xas a
point to the earth or as the radius of the earth to that of the heavens. The
ratio of two infinitesimals he thought of as a quotient of inassignables or of
indefinitely small quantities, but one which could nevertheless be expressed
in terms of definite quantities such as the ratio of ordinate to subtangent.

A flurry of attacks and rebuttals was initiated in books of 1694 and 1695
by the Dutch physician and geometer Bernard Nieuwentijdt (1654-1718).
Although he admitted that in general the new methods led to correct results,
he criticized the obscurity and pointed out that sometimes the methods led
to absurdities. He complained that he could not understand how the infinitely
small quantities differed from zero and asked how a sum of infinitesimals
could be finite. He also challenged the meaning and existence of differentials
of higher order and the rejection of infinitely small quantities in portions of
the arguments.

Leibniz, in a draft of a reply to Nieuwentijdt, probably written in 1695,
and in an article in the Acta Evuditorum of 1695,'® gives various answers. He
speaks of ““ overprecise™ critics and says that excessive scrupulousness should
not cause us to reject the fruits of invention. He then says his method differs
from Archimedes’ only in the expressions used, but that his own are better
adapted to the art of discovery. The words *infinite” and ‘‘infinitesimal”
signify merely quantities that one can take as large or as small as one wishes
in order to show that the error incurred is less than any number that can be
assigned—in other words, that there is no error. One can use these ultimate
things—that is, infinite and infinitely small quantities—as a tool, much as
algebraists used imaginary roots with great profit.

Leibniz’s argument thus far was that his calculus used only ordinary
mathematical concepts. But since he could not satisfy his critics, he enun-
ciated a philosophical principle known as the law of continuity, which was
practically the same as one already stated by Kepler. In 1687, in a letter to
Pierre Bayle,’® Leibniz expressed this principle as follows: “In any supposed
transition, ending in any terminus, it is permissible to institute a general
reasoning, in which the final terminus may also be included.” To support
17. Math. Schriften, 5, 322 fI.

18. Acta Erud., 1695, 310-16 = Math. Schriften, 5, 320-28.
19. Math, Schriften, 5, 385,
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this principle he gives, in an unpublished manuscript of about 1695, the
example of including under one argument ellipses and parabolas, though the
parabola is a limiting case of the ellipse when one focus moves off to infinity.
He then applies the principle to the calculation of dy:dx for the parabola
y = x3/a. After obtaining

dy:dx = (2% + dx):a,

he says, “Now, since by our postulate it is permissible to include under the
one general reasoning the case also in which [Fig. 17.21] the ordinate x,y, is
moved up nearer and nearer to the fixed ordinate x,y, until it ultimately
coincides with it, it is evident that in this case dx becomes equal to 0 and
should be neglected. ...” Leibniz does not say what meaning should be
given to the dx that appears at the left side of the equation.

Of course, he says, things that are absolutely equal have a difference
that is absolutely nothing; therefore a parabola is not an ellipse.

Yet a state of transition may be imagined, or one of evanescence, in
which indeed there has not yet arisen exact equality or rest.... but in
which it is pasting into such a state that the difference is less than any
assignable quantity; also that in this state there will still remain some
difference, some velocity, some angle, but in each case one that is
infinitely small. ...

For the present, whether such a state of instantaneous transition
from inequality to equality ... can be sustained in a rigorous or meta-
physical sense, or whether infinite extensions successively greater and
greater, or infinitely small ones successively less and less, are legitimate
considerations, is a matter that I own to be possibly open to question. ...

It will be sufficient if, when we speak of infinitely great (or, more
strictly, unlimited) or of infinitely samall quantities (i.e., the very least of
those within our knowledge), it is understood that we mean quantities
that are indefinitely great or indefinitely small, i.c., as great as you
please, or as small as you please, so that the error that any one may assign
may be less than a certain assigned quantity.

¢
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On these suppositions, all the rules of our algorithm, as set out in the
Acta Eruditorum for October 1684, can be proved without much trouble.

Leibniz then goes over these rules. He introduces the quantities (d}y and
(d)x and carries out the usual processes of differentiation with them. These
he calls assignable or definite nonvanishing quantities. After obtaining the
final result, he says, we can replace (d)y and (d)x by the evanescent or un-
assignable quantities dy and dx, by making *‘ the supposition that the ratio of
the evanescent quantities dy and dx is equal to the ratio of (d)y and (d)x,
because this supposition can always be reduced to an undoubtable truth.”

Leibniz’s principle of continuity is certainly not a mathematical axiom
today, but he emphasized it and it became important later. He gave many
arguments that are in accordance with this principle. For example, in a
letter to Wallis,?® Leibniz defended his use of the characteristic triangle as a
form without magnitude, the form remaining after the magnitudes had been
reduced to zero, and challengingly asked, “Who does not admit a form
without magnitude?”’ Likewise, in a letter to Guido Grandi,*! he said the
infinitely small is not a simple and absolute zero but a relative zero, that is,
an evanescent quantity which yet retains the character of that which is dis-
appearing. However, Leibniz also said, at other times, that he did not
believe in magnitudes truly infinite or truly infinitesimal.

Leibniz, less concerned with the ultimate justification of his procedures
than Newton, felt that it lay in their effectiveness. He stressed the procedural
or algorithmic value of what he had created. Somehow he had confidence
that if he formulated clearly the rules of operation and these were properly
applied, reasonable and correct results would be obtained, however doubtful
might be the meanings of the symbols involved.

It is apparent that neither Newton nor Leibniz succeeded in making
clear, let alone precise, the basic concepts of the calculus: the derivative and
the integral. Not being able to grasp these properly, they relied upon the
coherence of the results and the fecundity of the methods to push ahead
without rigor.

Several examples may illustrate the lack of clarity even among the great
immediate successors of Newton and Leibniz. John Bernoulli wrote the first
text on the calculus in 1691 and 1692. The portion on the integral calculus
was published in 1742;23 the part on the differential calculus, Die Differential-
rechnung, was not published until 1924. However, the Marquis de 'Hospital
did publish a slightly altered French version (already referred to) under his
own name in 1696. Bernoulli begins the Differentialrechnung with three postu-
lates. The first reads: “ A quantity which is diminished or increased by an

20. Matk, Schriften, 4, 54.
21. Math. Schrifien, 4, 218.
22. Opera Omnia, 3, 385-558.
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infinitely small quantity is neither increased nor decreased.” His second
postulate is: “Each curved line consists of infinitely many straight lines,
these themselves being infinitely small.”” In his reasoning he followed Leibniz
and used infinitesimals. Thus to obtain dy from y = x2, he uses ¢ for dx and
gets (x + €)2 — x%, or 2x¢ + ¢, and then just drops ¢2. Like Leibniz, he used
vague analogies to explain what differentials were. Thus, he says, the in-
finitely large quantities are like astronomical distances and the infinitely
small are like animalcules revealed by the microscope. In 1698 he argued
that infinitesimals must exist.?® One has only to consider the infinite series
1,1/2, 1/4,. ... If one takes 10 terms, then 1/10 exists; if one takes 100 terms,
then 1/100 exists. Corresponding to the infinite number of terms there is the
infinitesimal.

A few men, Wallis and John Bernoulli among them, tried to define the
infinitesimal as the reciprocal of co, the latter being a definite number to
them. Still others acted as though what was incomprehensible needed no
further explanation. For most of the seventeenth-century men, rigor was not
a matter of concern. What they often said could be rigorized by the method
of Archimedes could actually not have been rigorized by an Archimedes;
this is particularly true of the work on differentiation, which had no parallel
in Greck mathematics.

Actually the new calculus was introducing concepts and methods that
inaugurated a radical departure from earlier work. With the work of Newton
and Leibniz, the calculus became a totally new discipline that required
foundations of its own. Though they were not fully aware of it, the mathe-
maticians had turned their backs on the past.

Germs of the correct new concepts can be found even in the seventeenth-
century literature. Wallis, in the Arithmetica Infinitorum, advanced the arith-
metical concept of the limit of a function as a number approached by the
function so that the difference between this number and the function could
be made less than any assignable quantity and would vanish ultimately
when the process was continued to infinity. His wording is loose but contains
the right idea.

James Gregory in his Vera Circuli et Hyperbolae Quadratura (1667) ex-
plicitly pointed out that the methods used to obtain areas, volumes, and
lengths of curves involved a new process, the limit process. Moreover, he
added, this operation was distinct from the five algebraic operations of
addition, subtraction, multiplication, division, and extraction of roots. He
put the method of exhaustion into algebraic form and recognized that the
successive approximations obtained by using rectilinear figures circumscribed
about a given area or volume and those obtained by using inscribed recti-
linear figures both converged to the same *‘last term.” He also noted that

23. Leibniz: Math. Schrifien, 3, Part 2, 563 fI.
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this limit process yields irrationals not obtainable as roots of rationals. But
these insights of Wallis and Gregory were ignored in their century.

The foundations of the calculus remained unclear. Adding to the con-
fusion was the fact that the proponents of Newton’s work continued to speak
of prime and ultimate ratios, while the followers of Leibniz used the in-
finitely small non-zero quantities. Many of the English mathematicians,
perhaps because they were in the main still tied to the rigor of Greek geom-
etry, distrusted all the work on the calculus. Thus the century ended with
the calculus in a muddled state.
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